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The equation of  the mechanica l  s ta te  is  taken in the stage of e las t ic  deformation in accordance  with 
Hooke's law, and the s tage of e las toviscoplas t ic  deformat ion,  in different ia l  form [1-3]: 

r = E8 with t ' ~  tt.d; (1) 

where  tt .  d is  the t ime of the appearance  of p las t ic  deformat ion in the "weakest"  c r o s s  sect ion of the bar; a c ,  
r a r e  constants;  f (c)  i s  the calculating s ta t ic  q - ~  diagram: 

I(8) = E~ with ~ ~< ~.t,  
/(e) = Cr t = E~s.t with es. t ~ 8 ~ ee.t , 

l(e) = 0 t -}- Ehard(8 --  ~e.t) with 8e. t ~ g ~ eunif; 

E,  Ehard  a r e  the moduli of e las t ic i ty  and hardening; c s. t ,  ee . t ,  Cunif a re  the deformat ions ,  corresponding,  
respec t ive ly ,  to the s t a r t  of  p las t ic  deformat ions ,  the end of the a rea  of creep,  and the l imiting uniform elonga-  
t ion. 

With a re la t ive ly  smal l  range of deformat ion ra tes ,  for  de terminat ion  of the lag t ime of plast ic  de fo rma-  
t ion the Schmidt c r i t e r ion  can be used [4], 

.~g exp [ (r (t~) - (rt ] 
~t------ff-- d t ,  = Xo, (3) 

0 

where  m,  ~'0 a r e  constants;  t 1 is the t ime,  calculated f rom the moment  that  the s t r e s s e s  attain the stat ic yield 
point ~ t ;  t lag is  the lag t ime of plast ic  deformat ion,  reckoned f rom the same moment .  

Measuremen t  of smal l  p las t ic  dis t r ibut ions of mild s tee l  under dynamic loading has brought out ex-  
t r e m e l y  nonuniform distr ibution over  the length of rods  [5, 6]. In [7] i t  is  noted that the record ing  of a failing 
(with r e s p e c t  to creep) "sec t ion  of the d iagram is actual ly impossible  in the plast ic  region with existing methods 
of investigation,  and the ra te  of deformat ion  is  found to be var iab le  and to differ  f rom the ra te  of deformation 
in the plast ic  region;  the re fo re ,  the initial  section of the curve of the plas t ic  deformat ion cannot be regarded  
as re l i ab le"  and the Wreferral  of  the p las t ic  r e s i s t an ce  to the mean ra te  of deformation,  on the chosen 
base  of the measuremen t ,  can have only an a r b i t r a r y  c h a r a c t e r . "  

T h e  mechanism of the appearance of nonidentical  p las t ic  deformat ions  can be in t e rp re t ed  using Eq. (2), 
if  functional dependences ins tead of  constant  dependences a re  in t roduced into it. However,  integrat ion of this 
equation, for  example,  with var iab le  (depending on the absc i s sa  of the c ros s  section and the time) va lues  of 
the constants r and qc is r a the r  compl icated and does not take in a t rans i t ional  p roces s ,  where par t  of the 
c r o s s  sect ions work e las t ica l ly  and the other  pa r t  e las teplas t ica l ly .  An ahalysis  of the development  of t e s t  
samples  shows that the plas t ic i ty  does not take in the whole volume of the sample immedia te ly ,  but a r i s e s  f i r s t  
in the "weakest"  c r o s s  sect ions and is  then propagated with a finite ve loc i ty  to the " s t ronge r  n c ro s s  sect ions .  
The nonsimultaneous appearance  of the p l a s t i c  deformat ions  brings about the i r  nonuniform distr ibution over  
the length of the rod in the~first  s tages  of p las t i c  de format ion .  The nontmiformity of the plast ic  deformat ions  
can,  in a f i r s t  approximat ion ,  be due to  the nonsimultaneous appearance of the plas t ic  deformat ions ,  i .e . ,  the 
constants  m and 70 in the un iversa l  c r i te r ion  of the creep  (3) can be taken as functions of the absc i ssa  of the 
c ros s  section x. 
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Analys is  of  the exper imenta l  data showed that  we can l imit  ourse lves  to the change of only one co- 
eff ic ient  m. The universa l  c r i t e r ion  of the c r eep  can now be wri t ten in the following manner :  

:T[ ] ~ ~ ( t O ~ ~  dt~ = t ,  (4) ~-~ exp m (~) a t 
0 

where  m(O is  a function of the absc i s sa  of the c ross  section.  

Using the c r i t e r i on  (4), Eq. (2) mus t  be integrated for each c ross  section under i ts  initial  conditions. 

The dependence m(O is  chosen on the basis of the exper imenta l  data, taking account of different  loading 
conditions, for  the "weakes t"  (mini n) and "s t ronges t  n (mma x) c ros s  sect ions.  The value of the coefficient 
m was in t e rp re t ed  as  a random quantity, obeying a Gaussian distribution; the a rea  of the asymptot ic  par t s  of 
the curve of the normal  distr ibution beyond the l imi ts  of the segment  (retain, mma x) was a de termined  par t  
of the a r e a  of the whole curve .  The nweakest ~ c ro s s  section (mini n) was a r b i t r a r i l y  r e f e r r e d  to the left-hand 
end of the rod with the absc i ssa  ( - / / 2 )  and the "s t ronges t"  (mma x) to the r ight-hand end with the absc issa  
(+ l /2) .  

The express ion  for  re(O, obtained a f t e r  integrat ion of the curve of the Gaussian distr ibution,  i~ cumber-  
some and inconvenient  for  fu r the r  calculat ions.  The following approximation is  sufficiently exact  and simple:  

m(~) = ra(0)[l q- kl~ -- k3~3], (5) 

where  m(0) =ram= (retain + m m a x ) / 2  is  the value of m for the centra l  c ro s s  section of the bar;  ~ =x fl;  k 1 and 
k 3 a re  coeff icients ,  de te rmined  f rom the boundary condiiions 

m ( - 0 . 5 )  = m~t . ,  m ( + 0 . 5 )  = m ~ .  

Using (1), (2), (4), and (5) i t  is poss ible  to solve var ious  problems  (in a quasis ta t ie  s tatement)  of the 
elongation of a s teel  bar ,  whose p rope r t i e s  of lagging c reep  a re  not constant along the length. In view of the 
smal l  length of the bar  l and the re la t ive ly  high r a t e  of change in the s t r e s s e s ,  we neglect  wave p r o c e s s e s  in 
the bar.  We assume the lef t -hand side of the bar  to be fixed and the r ight-hand side to be f ree  (Fig. 1). F rom 
what has  been said it follows that the s t r e s s e s  along the length of the bar a re  constant,  

o(z,  t) = ~(t), (6) 

and the express ion  for  the d isplacements  has the fo rm 

The t ime of the appearance  of c reep  in the c ros s  section x, reckoned f rom the s t a r t  of the loading, is  equal to 

tt.d(x) = t t + tiag(~)- 

Equation (2), talcing account  of (6), is writ ten in the fo rm 

E ~e(=, t) d~ %[ : - - t ]  
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Le t  us  c o n s i d e r  the fou r  fol lowing p r o b l e m s :  

1) D e t e r m i n e  the d e f o r m a t i o n s  ~(x,  t ) a n d  d i s p l a c e m e n t s  u(x, t) of  the c r o s s  sec t ions  e r a  ba r  with the 
sudden impos i t i on  of  the fo rce  P(t)  = Fr  (t), i nva r i ab l e  with t ime ,  whe re  F is  the  a r e a  of  the t r a n s v e r s e  c r o s s  
sec t ion  of  the b a r  and the s t r e s s  ~ (t) = r  = cons t  exceeds  the s t a t i c  y i e ld  point  a t ;  

2) d e t e r m i n e  r  t) and u(x, t) with the ac t ion  of a l i nea r  f o r c e  P(t),  r i s i n g  a c c o r d i n g  to a l i nea r  law 

P(t) = E(zFt,where~ = const; 

3) d e t e r m i n e  a (t), ~ (x, t), u(x, t) with a d i s p l a c e m e n t  of  the f r e e  end of the ba r  with a cons tant  ve loc i ty  

u ( / / 2 ,  t ) = s i t ;  

4) d e t e r m i n e  r  s (x ,  t), u(x, t) with a d i s p l a c e m e n t  of  the f r ee  end of  the bar :  in the e l a s t i c  s tage  
with a cons tan t  v e l o c i t y  and,  in the e l a s top l a s t i c  s tage ,  with the a c c e l e r a t i o n :  

u(l/2, t) = ~ l t  with t <-~ it.d(--/'2), 

u(1/2, t) = a l t  - -  ~l[t - -  it.d(--/ '2 ) ]~ with t ~ tt.d(--V2), where ~ = coast. 

With so lu t ion  o f  p r o b l e m s  1 and 2, knowing the law of  change  of the s t r e s s e s  with t i m e  a ( t ) ,  f r o m  (4), 
(5) we can obtain an equa t ion  fo r  de t e rm i n i ng  the a b s m s s a  x of  the boundary  of  the zones  of e l a s t i c  and e l a s t o -  
v i s c o p l a s t i c  d e f o r m a t i o n  of the m a t e r i a l ,  in p r o b l e m s  3 and 4, this  law is  unl~own;  t h e r e f o r e ,  the mot ion  
of  the boundary  o f  the zones  ~ can be found only by solving a s y s t e m  of  equat ions .  

The  solut ion of p r o b l e m s  in an M-220 digi ta l  compu te r  (the A L G O L  p r o g r a m  was  c o n s t r u c t e d  by V. V. 
Samar in)  was  c a r r i e d  out with the fol lowing va lues  of  the cons tan t s :  

u t = 2607 kgf/cm 2, E = 2.1 �9 t06 kgf/cm z, r 0 = 1 sec, m(0) = 0.092, k 1 = 0.160, k s = 0.106, 
% = 275 kgf/cm z, T = 0.00262 SeC, ~e.t = 0.04, eunif = 0.15, Ehard = 16,600 kgf/cm 2. 

F i g u r e  2 ( p r o b l e m  1, r = 1 . 2 z t =  const)  shows tha t  taking accoun t  of  the  p r o p e r t i e s  of the Wweak" c r o s s  
sec t ion  [line e ( - l / 2 ,  t)], d e t e r m i n i n g  the s t a r t  of  c r eep ,  o r  the p r o p e r t i e s  only of  the " s t rong"  c r o s s  sec t ion  
[line e (+ 1 / 2 ,  t)], d e t e r m i n i n g  the m o m e n t  when the c r e e p  t akes  in the whole ba r ,  o r  only o f  the cen t ra l  c r o s s  
sec t ion  [line e (0, t)], does  not give a c o r r e c t  r e p r e s e n t a t i o n  of  the mean  de fo rma t ion  era(t) ;  i t  can be seen 
that the lines am(t) and e(0, t) practically coincide only with g ->0.016. 

For the conditions ~ =const (problem 2, ~=0.01), the lines 8re(t) and e(0, t) intersect only with ~ ~0.03 
(Fig. 3)o Figure 4 shows the initial part of the theoretical ff-~ diagram for steel St.3; the form of the curve 
is in good agreement with the experimental data of [8]. 

The curves of (r (t) and ff (~) (Figs. 5, 6) were plotted for the conditions ~ = const within the lin~,its of the 
elasticity and the accelerated deformation in the elastoplasticregion (problem 4). The dashed line shows 
the curves of ff (t) and o-(~) plotted under the assumption that the creep takes in the whole sample immediately 
(in accordance with Kelly) and that there is a drop in the stresses from the upper yield point to the lower in 
accordance with a functional dependence (line AB') having a ~memory. ~ These curves differ sharply from the 
experimental. A shortcoming of the theoretical solution proposed in [3], leading to an enormous difference 
between the upper and lower yield points (Fig. 6), can be eliminated by taking account of the nonsimultaneous 
creep of the material along the length of a sample~ An analysis of the example given shows that, in approxi- 
mate calculations, the mean value of the ~modulus of the relaxation" for mild steel (brand St. 3) can be taken 
equal to Ere I =- I06 kgf/cm 2. 

In Fig. 7 it is possible fx> follow the motion with time of the abscissa ~=x/l of the boundary between the 
zones of elastic and elastoviscoplastic deformation of the material~ The creep takes in the whole sample only 

0.008 sec after the start of loading. 

The use of the equation of the mechanical state in differential form, at the same time taking account of 
the  i nhomogene i ty  of the lagging c reep ,  g ives  s ign i f i can t  r e f i nemen t s  of  the ca lcu la t ion  with d e f o r m a t i o n s  of  
the  m a t e r i a l  no t  exceed ing  e = 0 .003-0 .005.  
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T I M E  C R I T E R I A  OF E X P L O S I V E  F R A C T U R E  

Yu.  I .  F a d e e n k o  UDC 539.375 

The total f racture  of a solid in a given section presupposes the satisfaction of the following time cri ter ia:  
1) the fracture  preparat ion cr i ter ion (damage accumulation, formation of embryonic cracks); 2) the integral 
crack coalescence cri terion,  based on the nonstationary crack  growth equation. 

In solving specific problems it may prove convenient to consider separately the initial (essentially non- 
stationary) phase of accelerat ion of cracks initially at r es t  and the subsequent phase of quasistationary growth; 
in this case the second of the above-mentioned cr i ter ia  breaks down into two separate time conditions. The 
starting relations may also include Griffith's criterion, i.e.,  a differential crack growth condition requiring 
that the energy- re lease  rate be not less than the work-absorption rate.  Generally speaking, Griffith's cr i ter ion 
should be obtained from the crack growth equation by equating the growth rate to zero. 

Thus, the total f racture  time ~" can be represented as the sum of the fracture  preparation time T 1, the 
duration of the t ransient  process  T 2, and the period of quasistationary growth leading to total coalescence of 
the cracks T 3 : 

= ~ + ~ + ~3- (i) 

In recent  years  the kinetic theory of fracture has gained wide acceptance. The fundamental principles 
of the kinetic theory have received extensive experimental confirmation; for alloys and polymers they have 
proved to be so general  that deviations from them have been the subject of special investigation. However, the 
experiments on which the theory is based relate to the region of large rupture lives (10-3sec and more). Until 
recently it  was uncertain whether the kinetic theory could be applied on the interval of short rupture lives 
(10 -8 sec or less) typical of explosive fracture.  Here it is shown that the region of applicability of the kinetic 
theory,  as usually formulated, is limited and that on the interval of short rupture lives it should be substan- 
tially modified. 

The basic relation of the kinetic theory - the time fracture cr i ter ion determining the rupture life T [see 
(1)] of a solid subjected to the action of a constant tensile s t ress  ~ - is usually written in the following form: 

u- ~o (2) 

where k is Boltzmarm's constant; T is temperature;  T 0 is the preexponential coefficient, which coincides in 
order  of magnitude with the period of the thermal vibrations of the atoms (10-13-10 -12 sec); u is the activation 
energy (of the order  of the atomic bond energy in the solid). 

The factor T is a character is t ic  of the actual  processes  prepara tory  to f racture  that take place at the 
atomic level. I t  is  usually assumed that ,/ character izes  the most dangerous of the structural defects - the 
mic ros t r e s s  ra i se r s ;  the quantity T, which has the dimension of volume, can be interpreted as the product of 
the volume of the defect and the s t ress -concent ra t ion  factor .  
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